32 research outputs found

    E_{10} Symmetry in One-dimensional Supergravity

    Get PDF
    We consider dimensional reduction of the eleven-dimensional supergravity to less than four dimensions. The three-dimensional E8(+8)/SO(16)E_{8(+8)}/SO(16) nonlinear sigma model is derived by direct dimensional reduction from eleven dimensions. In two dimensions we explicitly check that the Matzner-Misner-type SL(2,R)SL(2,R) symmetry, together with the E8E_8, satisfies the generating relations of E9E_9 under the generalized Geroch compatibility (hypersurface-orthogonality) condition. We further show that an extra SL(2,R)SL(2,R) symmetry, which is newly present upon reduction to one dimension, extends the symmetry algebra to a real form of E10E_{10}. The new SL(2,R)SL(2,R) acts on certain plane wave solutions propagating at the speed of light. To show that this SL(2,R)SL(2,R) cannot be expressed in terms of the old E9E_9 but truly enlarges the symmetry, we compactify the final two dimensions on a two-torus and confirm that it changes the conformal structure of this two-torus.Comment: 33 pages, 3 figures. The action of the Chevalley generators of SL(2,R)_8 is corrected. Commutativity of SL(2,R)_0 and SL(2,R)_8 is checked in detail. The generalized Geroch compatibility (hypersurface-orthogonality) condition is derive

    project report Promise2007

    Get PDF
    Das Projekt Promise2007 befasste sich mit der Erstellung und Auswertung einer Statistik zur Mitgliedersituation im Berufsverband Medizinischer Informatiker e.V.. Mit dem Ziel mehr über die Mitglieder und ihre derzeitige Situation zu erfahren wurde das Projekt an der Fachhochschule Hannover initiiert. Statistisch erfasst wurden Fragen zum Beschäftigungsverhältnis, zu Aus- und Weiterbildung, der beruflichen Situation und persönliche Angaben. Die Ergebnisse wurden ausgewertet und daraus wichtige Erkenntnisse für den BVMI e.V. abgeleitet, welche auf die weitere Verbandsarbeit Einfluss nehmen

    Review of Large-Scale Biochar Field-Trials for Soil Amendment and the Observed Influences on Crop Yield Variations

    Get PDF
    Increasing pressure on farming systems due to rapid urbanization and population growth has severely affected soil health and fertility. The need to meet the growing food demands has also led to unsustainable farming practices with the intensive application of chemical fertilizers and pesticides, resulting in significant greenhouse gas emissions. Biochar, a multifunctional carbon material, is being actively explored globally for simultaneously addressing the concerns related to improving soil fertility and mitigating climate change. Reviews on biochar, however, mainly confined to lab-scale studies analyze biochar production and its characteristics, its effects on soil fertility, and carbon sequestration. The present review addresses this gap by focusing on biochar field trials to enhance the current understanding of its actual impact on the field, w.r.t. agriculture and climate change. The review presents an overview of the effects of biochar application as observed in field studies on soil health (soil’s physical, chemical, and biological properties), crop productivity, and its potential role in carbon sequestration. General trends from this review indicate that biochar application provides higher benefits in soil properties and crop yield in degraded tropical soils vis-a-vis the temperate regions. The results also reveal diverse observations in soil health properties and crop yields with biochar amendment as different studies consider different crops, biochar feedstocks, and local climatic and soil conditions. Furthermore, it has been observed that the effects of biochar application in lab-scale studies with controlled environments are not always distinctly witnessed in corresponding field-based studies and the effects are not always synchronous across different regions. Hence, there is a need for more data, especially from well-designed long-term field trials, to converge and validate the results on the effectiveness of biochar on diverse soil types and agro-climatic zones to improve crop productivity and mitigate climate change

    Corrosion studies on Fe-30Mn-1C alloy in chloride-containing solutions with view to biomedical application

    Get PDF
    Austenitic Fe-30Mn-1C (FeMnC) is a prospective biodegradable implant material combining high mechanical integrity with adequate corrosion rates. The fast solidified TWIP alloy, its constituents and 316L stainless steel were electrochemically analysed in various electrolytes at 37 °C under laminar flow. Potentiodynamic polarization tests were conducted in Tris-buffered simulated body fluid (SBF), in Tris-buffered saline (TBS) and in 150-0.15 mM NaCl solutions (pH 7.6, 10, 5, 2) to study initial corrosion stages. Active dissolution of FeMnC is revealed in all electrolytes and is discussed on basis of the Fe and Mn behaviour plus is compared to that of 316L. The role of Tris (Tris(hydroxymethyl)aminomethane) as organic buffer for SBFs is critically assessed, particularly with view to the sensitivity of Fe. SEM studies of FeMnC corroded in NaCl revealed preferential dissolution along Mn-rich grain boundary regions. Static immersion tests of FeMnC in SBF with surface and solution analyses (SEM/EDX, XPS, ICP-OES) indicated that dissolution processes interfere with the formation of permeable surface coatings comprising hydroxides and salt

    Algebras, BPS States, and Strings

    Full text link
    We clarify the role played by BPS states in the calculation of threshold corrections of D=4, N=2 heterotic string compactifications. We evaluate these corrections for some classes of compactifications and show that they are sums of logarithmic functions over the positive roots of generalized Kac-Moody algebras. Moreover, a certain limit of the formulae suggests a reformulation of heterotic string in terms of a gauge theory based on hyperbolic algebras such as E10E_{10}. We define a generalized Kac-Moody Lie superalgebra associated to the BPS states. Finally we discuss the relation of our results with string duality.Comment: 64 pages, harvmac (b), Discussion of BRST improved, typos fixed, two references adde

    PRO B: evaluating the effect of an alarm-based patient-reported outcome monitoring compared with usual care in metastatic breast cancer patients—study protocol for a randomised controlled trial

    Get PDF
    Background: Despite the progress of research and treatment for breast cancer, still up to 30% of the patients afflicted will develop distant disease. Elongation of survival and maintaining the quality of life (QoL) become pivotal issues guiding the treatment decisions. One possible approach to optimise survival and QoL is the use of patient-reported outcomes (PROs) to timely identify acute disease-related burden. We present the protocol of a trial that investigates the effect of real-time PRO data captured with electronic mobile devices on QoL in female breast cancer patients with metastatic disease. Methods: This study is a randomised, controlled trial with 1:1 randomisation between two arms. A total of 1000 patients will be recruited in 40 selected breast cancer centres. Patients in the intervention arm receive a weekly request via an app to complete the PRO survey. Symptoms will be assessed by study-specific optimised short forms based on the EORTC QLQ-C30 domains using items from the EORTC CAT item banks. In case of deteriorating PRO scores, an alarm is sent to the treating study centre as well as to the PRO B study office. Following the alarm, the treating breast cancer centre is required to contact the patient to inquire about the reported symptoms and to intervene, if necessary. The intervention is not specified and depends on the clinical need determined by the treating physician. Patients in the control arm are prompted by the app every 3 months to participate in the PRO survey, but their response will not trigger an alarm. The primary outcome is the fatigue level 6 months after enrolment. Secondary endpoints include among others hospitalisations, use of rescue services and overall QoL. Discussion: Within the PRO B intervention group, we expect lower fatigue levels 6 months after intervention start, higher levels of QoL, less unplanned hospitalisations and less emergency room visits compared to controls. In case of positive results, our approach would allow a fast and easy transfer into clinical practice due to the use of the already nationwide existing IT infrastructure of the German Cancer Society and the independent certification institute OnkoZert

    The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution

    Get PDF
    The immune system can recognize and attack cancer cells, especially those with a high load of mutation-induced neoantigens. Such neoantigens are abundant in DNA mismatch repair (MMR)-deficient, microsatellite-unstable (MSI) cancers. MMR deficiency leads to insertion/deletion (indel) mutations at coding microsatellites (cMS) and to neoantigen-inducing translational frameshifts. Here, we develop a tool to quantify frameshift mutations in MSI colorectal and endometrial cancer. Our results show that frameshift mutation frequency is negatively correlated to the predicted immunogenicity of the resulting peptides, suggesting counterselection of cell clones with highly immunogenic frameshift peptides. This correlation is absent in tumors with Beta-2-microglobulin mutations, and HLA-A*02:01 status is related to cMS mutation patterns. Importantly, certain outlier mutations are common in MSI cancers despite being related to frameshift peptides with functionally confirmed immunogenicity, suggesting a possible driver role during MSI tumor evolution. Neoantigens resulting from shared mutations represent promising vaccine candidates for prevention of MSI cancers. DNA mismatch repair (MMR)-deficient cancers with microsatellite-instability are characterized by a high load of frameshift mutation-derived neoantigens. Here, by mapping the frameshift mutation landscape and predicting the immunogenicity of the resulting peptides, the authors show evidence of immunoediting in MMR-deficient colorectal and endometrial cancers.Peer reviewe

    Impact of preferential methane flow through soil on microbial community composition

    No full text
    The anaerobic microbial degradation of waste organic fractions in landfills constitutes one of the principal anthropogenic methane sources. Microbial oxidation of methane in optimized landfill covers or biofilters has been listed as key mitigation technology for the reduction of methane fluxes from landfills that are no longer suitable for energy recovery or flaring. Therefore, it is vital to understand what influences distribution of methane oxidizers and their activity in landfill soils. Here we describe the impact of gas fluxes through preferential pathways (hotspots) in the cover soil of a municipal solid waste landfill in north-western Germany on the soil properties and the microbial communities that colonize the upper soil crust in these environments. Two sites with high surface methane concentrations (>14,000 ppm), two sites with moderate surface methane concentrations (similar to 400 ppm) and two sites without measurable methane emissions at the surface were investigated. It was found that elevated average soil methane concentrations coincided with increased levels of TOC and TN and the TOC/TN ratio in the topsoil. The increase of the latter posits a change in the composition of the organic matter towards increasing levels of nitrogen-poor components as for example EPS, which were observed in the samples with higher TOC/TN ratios. Elevated average soil methane concentrations were also accompanied by a decrease in the overall bacterial diversity. The community at these sites were dominated by a few lineages such as methanotrophs, particularly of type II, Burkholderiales, Rhodospirillales and Bradyrhizobiaceae. This dominance may have contributed to the purple discoloration at the soil surface at the sites with the highest surface methane concentrations
    corecore